сеть lorawan что это
Спецификация LoRaWAN. Введение. Основные понятия и классы оконечных устройств
Данная статья представляет собой введение в беспроводные сети LoRaWAN, и основана на спецификации LoRaWAN 1.0.2.
Введение в LoRaWAN
Типовая беспроводная сеть LoRaWAN представляет собой совокупность шлюзов (gateways), пересылающих сообщения между оконечными устройствами (end-devices) и центральным сервером (Network Server, NS), и характеризуется «звездной» топологией «star-of-stars».
Шлюзы называют также концентраторами (concentrators) и базовыми станциями (base stations). Оконечные устройства часто называют motes.
Связь между шлюзами и центральным сервером осуществляется через стандартные IP-соединения, а между шлюзами и оконечными устройствами — через беспроводные соединения, использующие широкополосную модуляцию LoRa или FSK. Модуляция LoRa была разработана компанией Semtech и предназначена для низкоскоростной беспроводной передачи данных на расстояния до нескольких километров в безлицензионных диапазонах частот (Европа — 433 и 868 МГц).
Связь между шлюзами и оконечными устройствами является двусторонней, но предполагается, что основной объем данных передается от оконечных устройств к шлюзам. Технология LoRa обеспечивает скорость передачи в беспроводном канале от 0.3 до 50 кбит/с. Для разделения каналов используется как набор частотных каналов, так и скоростей передачи (data rates).
Для оптимизации работы системы используется адаптивное изменение скорости передачи — ADR (adaptive data rate). Cетевой сервер оценивает качество сигнала, принимаемого от оконечного устройства, и может управлять как скоростью передачи, так и мощностью передатчика этого устройства.
Оконечное устройство может передавать данные на любом доступном канале и любой скорости передачи, учитывая следующее:
Основные преимущества сетей LoRaWAN
Основные преимущества беспроводных сетей LoRaWAN обусловлены использованием широкополосной модуляции LoRa и безлицензионных диапазонов частот. Сети LoRaWAN:
Варианты применения беспроводных сетей LoRaWAN
Пара слов о возможных применениях:
Классы оконечных устройств LoRaWAN
Вернемся к спецификации LoRaWAN и посмотрим, какие бывают устройства. На конец 2016 г. спецификация определяет 3 класса оконечных устройств LoRaWAN: A, B и C, отличающиеся друг от друга режимами приема. Устройства данных классов являются двунаправленными. Класс А является базовым и должен поддерживаться всеми устройствами.
Класс А (обязательный для всех)
Устройства класса А после каждой передачи открывают два коротких временных окна на прием (обозначаются как RX1 и RX2).
Интервалы от конца передачи до открытия первого и второго временных окон могут конфигурироваться, но должны быть одинаковыми для всех устройств в данной сети (RECEIVE_DELAY1, RECEIVE_DELAY2). Для европейского диапазона 868 МГц рекомендованное значение RECEIVE_DELAY1 составляет 1 секунду. Значение RECEIVE_DELAY2 должно равняться (RECEIVE_DELAY1 + 1) секунда.
Используемые частотные каналы и скорости передачи для интервалов RX1 и RX2 могут отличаться. Рекомендуемые значения приведены в отдельном документе — «LoRaWAN Regional Parameters», доступном на сайте LoRa Alliance.
Устройства класса А являются самыми низкопотребляющими, но для передачи сообщения от сервера к оконечному устройству необходимо дождаться следующего исходящего сообщения от этого устройства.
Класс B (Beacon)
В добавок к окнам приема, определенным для устройств класса А, устройства класса B открывают дополнительные окна приема по расписанию. Для синхронизации времени открытия дополнительных окон приема шлюзы излучают маячки (beacons). Все шлюзы, входящие в состав одной сети, должны излучать маячки одновременно. Маячок содержит идентификатор сети и метку времени (UTC).
Использование класса В гарантирует, что при опросе оконечных устройств задержка отклика не будет превышать определенную величину, определяемую периодом маячков.
Класс C (Continuous)
Устройства класса C находятся в режиме приема практически всё время за исключением промежутков, когда они передают сообщения. За исключением временного окна RX1 оконечное устройство использует параметры приема RX2.
Класс С может применяться там, где не нужно изо всех сил экономить энергию (счетчики электрической энергии) или где необходимо опрашивать оконечные устройства в произвольные моменты времени.
Итак, с основами LoRaWAN и классами устройств немного разобрались — в следующей статье обсудим способы активации оконечных устройств.
Технология LoRa
В данном цикле статей мы хотим познакомить хабрасообщество с опытом компании RTL-Service в изучении беспроводной технологии LoRa. На наш взгляд, данная технология обладает рядом особенностей, которые делают её очень интересной для решения определенного круга задач.
Мы рассмотрим историю появления технологии, то как она позиционируется, типовую архитектуру LoRaWAN сетей. Далее перейдём к детальному рассмотрению физических особенностей её реализации. И, наконец, нашему опыту работы с двумя реализациями трансиверов от Semtech и Microchip.
История появления технологии LoRa.
В начале 2015 года Semtech Corporation и исследовательский центр IBM Research представили новый открытый энергоэффективный сетевой протокол LoRaWAN (Long Range Wide Area Networks), обеспечивающий значительные преимущества перед Wi-Fi и сотовыми сетями благодаря возможности развертывания межмашинных (M2M) коммуникаций, разбавив затишье на рынке беспроводных технологий.
Технология LoRa появилась на свет под эгидой некоммерческой организации LoRa Alliance, основанной такими компаниями, как IBM, Semtech, Cisco и др., с целью принятия и продвижения протокола LoRaWAN в качестве единого стандарта для глобальных сетей с низким энергопотреблением (LPWAN — от англ. Low Power Wide Area Network).
Собственно, аббревиатура LoRa объединяет в себе метод модуляции LoRa в беспроводных сетях LPWAN, разработанный Semtech, и открытый протокол LoRaWAN.
Разработчики LoRa Alliance позиционируют LoRa как технологию, имеющую значительные преимущества перед сотовыми сетями и WiFi благодаря возможности развертывания межмашинных (M2M) коммуникаций на расстояниях до 20 км. и скоростях до 50 Кбит/с., при минимальном потреблении электроэнергии, обеспечивающем несколько лет автономной работы на одном аккумуляторе типа АА.
Диапазон применений данной технологии огромен: от домашней автоматизации и интернета вещей (Internet of Things, IoT) до промышленности и умных городов.
Архитектура LoRaWAN сетей.
Рассмотрим архитектуру LoRaWAN сетей. Типичная сеть LoRaWAN состоит из следующих элементов: конечные узлы, шлюзы, сетевой сервер и сервер приложений.
Конечный узел (End Node) предназначен для осуществления управляющих или измерительных функций. Он содержит набор необходимых датчиков и управляющих элементов.
Шлюз LoRa (Gateway/Concentrator) — устройство, принимающее данные от конечных устройств с помощью радиоканала и передающее их в транзитную сеть. В качестве такой сети могут выступать Ethernet, WiFi, сотовые сети и любые другие телекоммуникационные каналы. Шлюз и конечные устройства образуют сетевую топологию типа звезда. Обычно данное устройство содержит многоканальные приёмопередатчики для обработки сигналов в нескольких каналах одновременно или даже, нескольких сигналов в одном канале. Соответственно, несколько таких устройств обеспечивает зону покрытия сети и прозрачную двунаправленную передачу данных между конечными узлами и сервером.
Сетевой сервер (Network Server) предназначен для управления сетью: заданием расписания, адаптацией скорости, хранением и обработкой принимаемых данных.
Сервер приложений (Application Server) может удаленно контролировать работу конечных узлов и собирать необходимые данные с них.
Рис. 1 Архитектура LoRaWAN сети.
В конечном итоге, LoRaWAN сеть имеет топологию звезда из звёзд, имеет конечные узлы, которые через шлюзы, образующие прозрачные мосты, общаются с центральным сервером сети. При таком подходе обычно предполагается, что шлюзами и центральным сервером владеет оператор сети, а конечными узлами – абоненты. Абоненты имеют возможность прозрачной двунаправленной и защищенной передачи данных до конечных узлов.
Т.к. LoRaWAN образуют глобальную сеть, то разработчики уделили особое внимание безопасности и конфиденциальности передаваемых данных, которые обеспечиваются шифрованием AES на нескольких уровнях:
• На сетевом уровне с использованием уникального ключа сети (Unique Network key, EUI64).
• Сквозную безопасность на уровне приложений с помощью уникального ключа приложения (Unique Application key, EUI64).
• И специального ключа устройства (Device specific key, EUI128).
Для решения различных задач и применений в сети LoRaWAN предусмотрено три класса устройств:
Рис. 2 Классы устройств в сетях LoRaWAN.
Сети LoRaWAN
Напомню, что термином IoT (Internet of Things) обозначают различные устройства, которые используют выход в сеть для взаимодействия друг с другом. К примеру, умная розетка подключается к Интернету не затем, чтобы сидеть в социальных сетях. Она получает из Сети команды, которые отправляет ее владелец. И она вещь. Вещь, которая пользуется Интернетом.
К буму IoT готовились давно. И почти сразу стало ясно, что для стабильной работы существующие стандарты передачи данных подходят мало.
Зачем что-то новое?
На первый взгляд, у нас уже есть готовые и обкатанные решения. Wi-Fi, LTE, почему не использовать их?
После тщательного анализа рынка компания Интерсвязь приняла решение строить свою сеть на базе стандарта LoRa.
Что такое LoRa?
Строго говоря, аббревиатурой LoRa (Long Range) обозначают лишь вид модуляции, то есть уровень l1 по модели OSI. Протокол канального уровня носит имя LoRaWAN. Но чаще всего «Лорой» называют совокупную систему, использующую LoRa на физическом и LoRaWAN на канальном уровне.
Работает это следующим образом. Базовая станция слушает эфир в заданном диапазоне частот. Когда она слышит запрос от какого-либо из устройств, то отвечает ему на частоте обращения. Ширина канала при этом составляет 125 кГц, максимальная скорость – чуть более 5 килобит/c. Да-да, вы не ослышались. Именно 5 и именно килобит/c. Этот стандарт Интернета вещей не создан для просмотра потокового видео. Его задача максимально быстро и гарантированно передать небольшое сообщение от датчика на базовую станцию. В зависимости от радиоусловий выбирается оптимальный набор параметров связи. За это отвечает SF (spreading factor) – коэффициент, к которому привязываются параметры передачи и приема. SF – это целое число, в стандарте он предусмотрен от 12 до 7. Чем выше SF, тем лучше помехозащищенность линии, но тем ниже скорость и тем больше времени в эфире занимает передача. Для примера, максимальная помехозащищенность достигается на SF=12. При этом время пакета в эфире составляет 2,466 сек, а скорость – 292 бит/сек.
Пакеты принимаются базовой станцией (в архитектуре LoRa ее чаще называют шлюзом), однако обрабатывает их следующее звено цепи – сетевой сервер. Этот сервер отвечает за управление всеми шлюзами, он решает через какой шлюз общаться с датчиком (если датчик слышно через несколько шлюзов) и определяет еще ряд важных параметров.
Однако сетевой сервер не обрабатывает полезную информацию из пакетов. Это делает следующее и самое важное звено – сервер приложений. Именно на сервере приложений происходит расшифровка показаний от датчиков, они в понятной форме раздаются либо в биллинг, либо в интерфейс потребителю, либо в другое заданное место.
Почему именно LoRa?
На данный момент существует несколько десятков стандартов Интернет-вещей. Часть из них универсальны, часть приспособлены решать свой круг задач. Все они более-менее придерживаются вышеописанных принципов. Есть даже стандарты на базе Wi-Fi и LTE. Так почему именно LoRa?
Выбор вендора
Российский рынок похож на спринтера, который замер в ожидании старта. Предложений по технологиям LoRa множество. Но половина фирм оказываются «перекупами», которые технологию в глаза не видели и готовы на заказ привезти что-то там из-за рубежа.
Еще часть имеет готовые платформы, к которым и стремится привязать пользователей и операторов. Т.е. сервер приложений будет находиться не у оператора, а у поставщика оборудования. Такая зависимость нас не устраивала. Потому мы решили писать сервер приложений своими силами.
Встал вопрос – на каких базовых станциях будем работать?
Прошу обратить внимание, что я пишу только национальную принадлежность компании-производителя. Сказать, что БС собраны по месту прописки будет не совсем верно. Например, Вега собирает станции в России, но использует для этого те же чипы Semtech. Потому каждая станция является некой солянкой.
Первоначально тесты проводились на штатных антеннах. Замеряли карту покрытия, считали две зоны охвата.
Зона 1 – гарантированно проходят все пакеты
Зона 2 – идут незначительные потери, не более 15 процентов.
В целом, все БС показали сходные результаты. У Веги и Kerlink Зона1 оказалась в радиусе 800-900 метров. Cisco за счет системы «одна антенна на передачу-две на прием» показала результаты на 30 процентов лучше. Зона 2 у всех трех станций оказалась примерно одинаковой.