С помощью чего летают птицы
Почему птицы летают и не падают?
Гравитация, или сила притяжения, действующая на все, что находится на нашей планете, конечно, распространяется и на птиц.
Для того чтобы удерживаться в воздухе, пернатым необходимо как-то противодействовать силе тяжести. Для противодействия природа наделила птиц крыльями. Особое строение крыла помогает птицам взлетать, удерживаться в воздухе, медленно парить или преодолевать большие расстояния.
Как устроено крыло?
Крыло птицы имеет не плоскую, а выгнутую форму. В полете воздух проходит над и под крылом, и оба потока достигают оконечности крыла одновременно. Но по верхней, выпуклой стороне крыла огибающая его струя воздуха проходит более длинный путь, чем по нижней. Поэтому и движется эта струя воздуха над крылом быстрее, чем та, что под крылом. Скорость движения струи воздуха над крылом выше, а давление ниже, чем под крылом.
Именно эта разница в давлении и рождает подъемную силу, противодействующую силе тяжести. Мощность подъемной силы зависит от формы и размера крыла. Имеют значение также скорость встречного потока воздуха и угол, под которым этот поток достигает переднего края крыла.
Птица имеет возможность регулировать подъемную силу, изменяя угол наклона крыла. К примеру, чтобы приземлиться, птице нужно повернуть крыло как можно круче по отношению к встречному потоку воздуха.
Огромное значение имеют для полета перья. Крыло птицы состоит из двух групп перьев: первостепенные, расположенные на тыльной стороне кисти, создают тягу во время полета. Эти перья крупные, в отличие второстепенных, прикрепленных к локтевой кости и составляющих несущую поверхность.
Второстепенные маховые перья расположены ближе к телу, и они лишь немного двигаются вверх и вниз. А длинные первостепенные перья своей формой напоминают пропеллер и двигаются с большой амплитудой.
Формы полета
Существуют разные формы полета, и самая распространенная из них – планирование и парение. Птица спускается с верхней точки (с крыши дома, вершины горы), и в движение ее приводит сила тяжести. Встречный воздушный поток создает подъемную силу, и птица по наклонной постепенно планирует вниз.
Если при этом на крылья действуют восходящие от земли потоки теплого воздуха, птица может не двигать крыльями и просто парить в небе. В таких потоках теплого воздуха подолгу могут парить степные орлы.
Интересно, что способность парить доступна только птицам, масса и размеры которых не меньше размеров вороны. У мелких птичек крылья небольшие. Их аэродинамические свойства не способны обеспечить парение, и таким птицам приходится энергично размахивать крыльями. Этот способ полета тоже имеет свое название – активный, или машущий.
Есть птицы, которые не могут летать. Например, в ходе эволюции крылья пингвинов трансформировались в ласты, которыми они помогают себе маневрировать в воде. Слишком тяжелы для полета страусы.
Чтобы подняться в воздух, им понадобились бы огромные крылья, но, чтобы управлять этими крыльями, страусам необходима была бы еще более развитая мускулатура, которая еще увеличила бы вес птиц. Вообще летать могут птицы весом не выше двадцати килограммов. Крупным дрофам, чтобы взлететь, нужно хорошо разбежаться.
Летные качества птиц
Они определяются формой и размером крыльев. Птицы с острыми и узкими крыльями летают очень быстро, с округлыми и широкими – могут легко маневрировать в полете; такими крыльями природа одарила птиц, живущих в кустарниках и лесных чащах.
Большие и широкие, закругленные спереди крылья журавлей и аистов позволяют этим птицам долго парить в слабых восходящих воздушных потоках. Чайки же, летающие над морем, справляются с мощными потоками воздуха, поэтому и крылья у них удлиненные и заостренные.
Скорость, с которой могут летать птицы, поразительна: у воробья она составляет 40 километров в час, а у стрижа – 80. Сапсан в пикирующем полете может развивать скорость до 30 километров в час, а крохотная колибри способна ускориться до 150 километров. Высота полета зависит от погоды и географических условий.
Птицы отряда воробьиных могут лететь на высоте от полуметра над морем до семи километров в горной местности. При перелетах птицы поднимаются на высоту от одного до полутора километров над уровнем моря, но многие летают не выше 150 метров. Интересный факт: гуси, которые перелетают в Индию над Гималаями, покоряют высоту 8830 метров.
В целом, помимо формы и размеров крыльев, а также типа перьев, к полету приспособлена и форма тела, и особенности строения скелета птиц. На внешней поверхности грудины у птиц есть большой вырост – киль, к которому крепятся мощные грудные мышцы. Именно они управляют движениями крыльев.
В позвоночнике птиц отдельные позвонки (поясничные, крестцовые, хвостовые) срастаются друг с другом для создания прочной опоры мышцам. Сам скелет птиц легкий, потому что часть их костей – полые. Вес мышц составляет до четверти всей массы тела птицы – это обеспечивает ей силу и выносливость, а также дает возможность запасти много кислорода.
Хорошее снабжение кислородом очень важно для полета, и природа мудро наделила птиц двойным дыханием: газообмен в их организме происходит при вдохе и при выдохе.
Как и почему летают птицы?
Мы представляем, как двигаются по небу самолеты и вертолеты. У них есть крылья, пропеллер и мотор. А также куча всяких приборов. Но как удается держаться в воздухе, а также разгоняться до приличной скорости обычным пернатым птахам? Что придает им энергии для взлета, горизонтального перемещения, парения и посадки? Остается выяснить, как летают птицы.
Как возникает подъемная сила у птиц?
Воздух обтекает передние края органов, которые мы называем «крыльями». При каждом взмахе представитель орнитофауны как бы разрезает воздух.
Но как летающим «братьям» удается набирать высоту, если нет сильного встречного потока? Ведь самолет создает его искусственно, разгоняясь до 700 км/час. Крупным пернатым помогает падение с высокого дерева или со скал. Мелким (легким) достаточно и скачка. Если крупный «летатель» внизу (к примеру, степной орел), подняться в воздух без ветра он не сможет.
Как получается парить в воздухе?
Почему птицы летают? В чем заключается секрет?
Птицы могут парить. Их двигающиеся «приспособления» являются еще и инструментами, с помощью которых они парят как планер.
Набранной в «падении-взлете» энергии достаточно для того, чтобы перемещаться по выбранному уровню атмосферы (авиаторы называют эти уровни «эшелонами»). Но уже горизонтально – то есть, широко расставив крылья в плоскости, параллельной небу (так птица становится планером). Встречный ветер или потеря импульса (разгона) заставит махать крыльями, но под другим углом и другими перьями. Направление помогает корректировать хвост – он тоже аэродинамический.
На что влияет форма крыльев?
Секрет в конструкции крыльев. Мало того, что они состоят из перьев – легчайших материалов стреловидного контура (аэродинамической формы). Перья смонтированы с основной конструкцией хитрым образом. Расставляя перья в стороны под разным углом (с помощью 3 отделов-конечностей) птица может маневрировать. Причем так, как не получится ни у одного самолета. Каждая из 3 конечностей левого и правого крыла (плечевая, локтевая и лучевая) снабжена удобным скелетом и мощными мышцами.
Сами перья тоже разные – маховые (2 видов) и летательные. Вторые помогают регулировать парение и ускорение горизонтального полета. А вот первые отвечают за быстрый взлет но и за торможение при посадке. О них-то и будет далее.
Как птицы взлетают и садятся?
Как вы уже знаете, отталкиваться от воздуха для набора высоты помогает мах. Но старт взлета все же осуществляется падением с высоты. Маховые перья работают с появлением встречного (нижнего) потока, меняя высотный уровень. «Мелочь» (воробьи) взлетают благодаря скачку – поток воздуха подбирает их, они предельно легкие. Увы, на большой подъем не способны.
Как приземляться? Все лишь надо нырнуть головой вниз и уменьшить площадь крыльев (прижать все перья друг к другу, а сами крылья – к корпусу). Ближе к земле птица вновь переходит в режим планирования. Но уже наклонно-кругового. В конце опускается на ножки с коготками.
Передвижение птиц по земле и воде
Половина птиц могут передвигаться еще и на воде. Такие виды называют «морскими» или «водно-болотными». По земле они передвигаются также как и все прочие – на коротких лапках.
Что же касается воды, то перья и пух покрыты влагоотталкивающим слоем, а сама птица настолько легка, что ей легко держаться на плаву, отталкиваясь крыльями уже как веслами.
В заключении еще одно. Есть птицы утерявшие способность летать – страус и куриные. Страусам и казуарам эволюция подарила мощные («беговые») ноги. А куриные были одомашнены, «осели».
Почему летают птицы
Почему птицы летают?
Если внимательно смотреть за полетом птиц, то можно увидеть, что птицы совершают движения крыльями вперед, одновременно раздвигая крылья, затем вниз и назад, сдвигая крылья, и, наконец, вверх (см. рис 1)
При движении «вниз-назад» создается разрежение воздуха перед крылом, то есть возникает поступательное движение птицы вперед. Очевидно, что, чем чаще движения крыльев «вниз-назад», тем больше разрежение воздуха перед крылом и, следовательно, больше скорость полета птицы.
Но если крылья двигаются вперед и назад относительно корпуса птицы, то должна ухудшаться устойчивость горизонтального положения корпуса птицы в полете. Но почему же этого не происходит?
Для ответа на этот вопрос рассмотрим строение перьев, входящих в состав крыльев птиц.
Перо состоит из стержня с прикрепленными к нему примерно под углом 45 градусов пластинами (см. рис 2. А – форма пластин у мелких птиц, Б – у крупных).
Верху пластины скреплены между собой упругими воздухонепроницаемыми соединениями. Перья накладываются друг на друга ( рис 2, В-В ). Сверху перья имеют большой коэффициент сцепления между собой ( по линии «а» ), а снизу – свободное перемещение. При движении крыльев вперед площадь крыльев увеличивается, перья раздвигаются и, за счет сцепления перьев между собой по линии «а», пластинки перьев отклоняются от стержня на больший угол ( рис 2, б), А1, Б1 ). Аэродинамическое качество нижней поверхности крыла ухудшается, происходит торможение воздуха в нижней поверхности крыла в задней ее части и, следовательно:
1. увеличивается подъемная сила крыла.
2. вектор подъемной силы крыла «П» ( см. рис. 3 ) сдвигается назад.
То есть, при движении крыльев «вперед-назад» вектор подъемной силы передвигается относительно крыла, а относительно корпуса птицы остается в одном и том же месте, тем самым предотвращая колебания корпуса птицы в полете.
Таким образом, птица в полете совершает следующие движения крыльями:
1. Вперед ( рис. 3, 1-2, ) Крылья раздвигаются.
Воздух заполняет крылья сверху в местах соединения перьев с мышцами крыла.
Создается дополнительная подъемная сила за счет торможения воздуха раздвигающимися пластинками перьев ( рис. 3, а))
2. «Вниз-назад» ( рис.3, 2-3 ) Крылья сдвигаются.
Создается подъемная сила
Происходит разрежение воздуха перед крылом ( увеличивается скорость полета )
Из крыльев сбрасывается присоединенный воздух ( между перьями – сверху и пластинами – снизу, вытесняясь в строну, противоположную направлению полета ).
Скорость воздуха, обтекающего верхнюю плоскость крыла, увеличивается, а следовательно, создается дополнительное разрежение воздуха над крылом.
Крылья перемещаются в исходное положение.
С течением времени кромки перьев ( линия «а» ) изнашиваются, трение между ними уменьшается и перья начинают проскальзывать между собой. Пластинки перьев раздвигаются на меньший угол, устойчивость полета ухудшается. Поэтому птицы меняют перья на новые.
Кстати, это положение можно проверить на живых птицах, исключив трение между перьями по линии «а».
А на основании полученных данных был разработан проект ВЭУ(ветроэнергетической установки), которая превосходит по всем своим характеристикам все имеющиеся аналоги. Но это уже совсем другая история.
Разработки моего отца, так что ставлю тэг «моё»
Почему и как летают птицы?
Почему и как летают птицы? Почему одни могут парить, а другие нет? Почему стая птиц может мгновенно и одновременно изменить направление полета? Человечество издавна задумывается над вопросами, касающимися полетов птиц, летучих мышей, насекомых. На многие из них биологи могли бы дать ответ уже сегодня, если бы не одно обстоятельство — если бы воздух не был прозрачным. До сих пор при съемке полета птиц даже высокоскоростной камерой чрезвычайно трудно проследить совершенство полета с точки зрения законов аэродинамики.
Что только не придумывали для облегчения поисков ответа на возникающие вопросы! Так, американский исследователь из Южнокалифорнийского университета Джефф Спеддинг стал использовать при съемках полетов птиц мыльные пузыри, заполненные гелием. Если такой пузырь достаточно мал, например, с булавочную головку, находящийся внутри газ заставляет его стремиться вверх. Этими пузырьками можно заполнить относительно большие емкости. В начале восьмидесятых годов Спеддинг изучал полет голубей. Он заставлял их пролетать сквозь облако таких пузырьков, созданное в большом просторном помещении, а затем высокоскоростной камерой фотографировал оставленный ими в этом облаке след полета.
Съемка показала, что при пролете голубей воздух закручивается совсем не так, как это должно быть согласно теории аэродинамики. При съемке можно было бы использовать и дым, но пузырьки с гелием оказались лучше; за ними было легче следить. Благодаря этому Джефф Спеддинг сумел довольно точно описать, как движется крыло голубя.
Чтобы проанализировать полет птиц, исследователи по традиции полагаются на теоретические законы аэродинамики, выведенные для летательных аппаратов с неподвижным крылом. Но оказалось, что при перенесении их на действия живых существ они уже не верны. Птицы и более сложны, и более совершенны, чем любые из современных летательных аппаратов. Рассматривая птицу как модель самолета, ученые исследуют ее в аэродинамической трубе. Создают они и особые роботы-крылья. И все это делается с целью определить, что же делает птица, когда летит, и произвести соответствующие измерения. Зачем это нужно? Чтобы помочь человеку улучшить конструкции проектируемых им летательных аппаратов и в первую очередь военных самолетов с высокой маневренностью.
Полет птиц за счет мускульной энергии — это чудо, которому люди не перестают удивляться и сегодня. Ведь чтобы поднять в воздух человека с помощью мускулов, нужны крылья размером 42,7 метра. А его грудная клетка должна иметь толщину 1,8 метра, чтобы вместить мускулы, достаточно мощные для производства взмахов.
Птицы, как, впрочем, и летательные аппараты, должны быть легкими, но мощными. Сегодня птицы могут летать, поскольку в процессе эволюции их внутренние органы и кости стали намного легче, чем у их предков рептилий. Пример ультралегкой конструкции являет собой океаническая птица фрегат: при размахе крыльев более двух метров его скелет весит менее ста двадцати граммов — вдвое меньше общего веса перьев.
Кстати, летучие мыши — превосходные летуны — также получили в результате эволюции суперлегкие кости. Потому они и висят, отдыхая, вниз головой, просто не могут встать на ноги. Их кости слишком тонки, чтобы выдержать нагрузку тела в стоячем положении. А черепа птиц вообще напоминают скорее яичную скорлупу, чем бронезащиту. Крылья же птиц, состоящие в основном из перьев, являют собой прямо-таки шедевр инженерного искусства природы: легкие и гибкие, но почти не поддающиеся разрушению.
Подъемная сила птицы создается за счет того, что воздух равномерно обтекает изогнутую поверхность крыла. А поступательное движение — за счет взмахов. Они-то и ставят в тупик многочисленных исследователей полета. Крыло — это не просто весло, которым птица «гребет» в воздухе, как полагал Леонардо да Винчи. Некоторые исследователи считают, что птица осуществляет повороты, вывернув внутреннюю часть крыла так, чтобы создать сопротивление на той стороне, куда она поворачивает, подобно действиям с портом сна на каноэ.
Совершая различные маневры, птицы должны координировать множество точных движений, начиная от изгибов и полного поворота крыла до изменения амплитуды взмахов. В полете им помогает центральная нервная система, управляющая мускулами. Но во многом птицы все же похожи на самый современный реактивный истребитель, обладающий высокой маневренностью и управляющийся компьютерной системой, позволяющей производить корректировку на большой высоте за доли секунд. Конечно, у птиц нет компьютера, зато есть крупный мозжечок, а, как известно, именно он участвует в координации движений животных.
Немало известно о полетах птиц и шведскому зоологу и ветеринару Ричарду Брауну. Если к крыше кабины планера прикрепить короткие нити, то при нормальном планировании они спокойно «летят» назад, но как только планер станет терять скорость, воздушные вихри поднимут нити вверх и даже могут направить их вперед — своего рода предупреждение об опасности. Точно так же, считает Браун, тысячи перьев, покрывающих крылья и тело птицы, могут работать как датчики воздушных потоков. Благодаря нервным окончаниям, птица сразу же чувствует движение перьев. Мускулы, на которых расположены перья, в основном действуют как пассивные датчики информации для нервной системы и в меньшей степени как движители. Чувствительные элементы на крыльях и определяют начало турбулентности (вихревого движения при активном перемешивании слоев воздуха) в обтекающем потоке, заставляя птицу изменить темп движения крыльев или несколько опустить их вниз.
Очень важны для птиц и акробатические способности. Ласточки, например, проводящие в воздухе до восьми часов в день, то и дело взмывают высоко в небо и бросаются вниз в погоне за насекомыми. А вот малиновки находятся днем в воздухе всего лишь несколько минут, совершая короткие перелеты, длящиеся обычно несколько секунд. Большая часть их полетов приходится на взлеты и посадки — самые утомительные моменты любого полета. Поэтому многие крупные птицы стараются делать их как можно реже. Грифы, соколы, альбатросы и другие крупные птицы почти все время проводят в парящем полете на воздушных течениях с распростертыми и почти неподвижными крыльями.
Для большей эффективности полета птицы искусно используют характерные особенности своих перьев. Например, грифы, совершая медленный полет по кругу, чтобы не потерять высоту, выпрямляют длинные, жесткие перья на концах крыльев и разворачивают их веером так, чтобы между ними образовались щели, препятствующие перемешиванию воздуха в потоке за птицей. В результате сопротивление снижается, а подъемная сила возрастает.
Сокол же, наоборот, пикируя на добычу, укладывает свои перья так, чтобы сократить площадь их поверхности. Ему нужна скорость, а не подъемная сила. Построить диаграмму полета птицы, пикирующей со скоростью 320 километров в час, непросто, и обычно скорость пикирования определяется приблизительно. Но специалисты надеются, что однажды им удастся вывести формулу построения диаграммы полета, применяемую к птицам любых размеров и форм.
А как летают насекомые? Мелкие осы и жуки, например, как бы гребут крыльями по воздуху, сопротивление которого им только помогает. Они ощущают воздух как что-то вязкое, наподобие сиропа. Им не нужна большая подъемная сила, и если они вдруг прекратили бы свое движение, то стали падать на землю не быстрее, чем комок пыли. Они «плывут» по воздуху, используя свои крылья, покрытые ворсинками, для создания большего сопротивления. При обратном движении крыла ворсинки моментально складываются. Происходит нечто подобное тому, как снижается сопротивление у весла, вынимаемого из воды. Кстати, крупным насекомым летать труднее.
Английский зоолог Чарлз Эллингтон из Кембриджского университета, интересующийся шмелями, в одной из своих работ писал, что по законам аэродинамики шмели летать не должны. Но они летают! Крылья шмелей и других крупных насекомых создают подъемную силу гораздо большую, чем определяет теория аэродинамики. Как это им удается? Теперь, кажется, ответ на этот вопрос получен. Это произошло при изучении полета крупных флоридских бражников (ночных бабочек), имеющих размах крыльев более десяти сантиметров. Когда такой бражник пролетает сквозь дым, который, кстати сказать, его совсем не беспокоит, можно видеть, как воздух вихрями закручивается от его тела к концам крыльев вместо того, чтобы согласно теории аэродинамики плавно обтекать крылья по направлению от их передней кромки к задней. Была построена большая механическая модель бражника (из ткани и меди) с двигающимися крыльями. И робот-бражник тоже создавал вихри, направленные в разные стороны.
Сегодня биологи уже вплотную приблизились к решению загадок: как насекомые и мелкие птицы создают такую большую подъемную силу при малом запасе энергии, как и почему они летают.
Человек всегда завидовал птицам. Как же, ведь они летают, а он не может! Двигатель развития летательного аппарата птиц — добывание пищи. Ну, а как же нелетающие птицы, например, страусы? Эти — исключение из правил. У людей вопрос с питанием решен давно, и теперь, приблизившись к разгадке полета, узнав, насколько нелегко он дается птицам, может быть, не стоит им завидовать?
P. S. О чем еще думают британские ученные: о том, что исследования механики полета птиц могут быть очень перспективными в том числе и с коммерческой точки зрения. Ведь если какому-нибудь ученому вдруг удастся разгадать тайну птичьего полета и чего доброго смастерить настоящие крылья, как мифический Дедал смастерил их для себя и своего сына Икара, думаю, такой ученый вмиг стал бы миллионером. Позже появились бы книги об истории его успеха, а еще позже книги по бизнесу (как на сайте /biznes_literatura/buhgalterija__nalogi__audit/) о роли инноваций в бизнес планировании и крылья из средства безграничного полета превратились бы в бухгалтерскую категорию.
Теперь вы знаете, почему птицы летают. Это обусловлено не только крыльями и перьями, но и всеми системами организма. У многих возникает вопрос: а почему тогда многие птицы летают, а некоторые не летают вообще? Проблема заключается в массе и в строении тела нелетающих птиц. Небольшие птицы могут летать, потому что они мало весят, имеют хорошо развитую мускулатуру для полёта, и размер их крыльев пропорционален размеру их тел. У некоторых птиц, например у страуса и пингвина, нет такой хорошо развитой мускулатуры, да и масса их тел довольна большая для того, чтобы подняться в воздух. Зато отсутствие полёта они компенсируют передвижением по земле или воде. Такие птицы хорошо плавают, ходят, бегают, а некоторые даже лазают по деревьям! В отличие от летающих птиц, у них хорошо развиты нижние конечности, с помощью которых они и двигаются.
А почему птицы улетают на юг? Многие люди ошибочно предполагают, что птицы покидают нас в зимний период из-за холода. Безусловно, на юге птицам теплее, но главная причина заключается в другом. Это отсутствие еды.
Полёт — основной способ передвижения большинства видов птиц, помогающий им искать пищу, мигрировать и спасаться от хищников. Полёт является наиболее специфической формой передвижения птиц, определившей основные черты организации этого класса. Способность птиц к полёту вызвала ряд адаптаций для обеспечения полёта, взлёта и посадки, ориентирования в пространстве и навигации.
Характеристики полёта птиц в значительной мере зависят от величины птицы и её экологической ниши. Хотя определённые биологические адаптации (к примеру, минимизация массы тела) характерны для всех летающих птиц, другие (например, форма крыльев) характерны только для отдельных групп.
Содержание [скрыть]
1История исследования
2Эволюция
2.1Древесная теория, с деревьев вниз
2.2Наземная теория, с земли вверх
2.3Бег с помощью крыльев
2.4Новые альтернативные теории
2.5Потеря способности к полёту некоторыми видами птиц
3Адаптации к полёту
3.1Крыло
3.1.1Скелет крыла
3.1.2Перья крыльев
3.1.3Форма крыльев
3.2Хвост
3.3Прочие адаптации к полёту
4Физика полёта
5Этапы полёта
5.1Взлёт
5.2Посадка
6Типы полёта
6.1Машущий полёт
6.2Парящий полёт
6.2.1Статическое парение
6.2.2Динамическое парение
7Методы сохранения энергии в полёте
8Зависание
8.1Зависание на месте
8.2Зависание против ветра
9Маневрирование и скорость полёта
10Высота полёта
11Примечания
12Литература
13Ссылки
История исследования [править | править вики-текст]
Рисунок изображающий полёт птицы, сделанный Леонардо да Винчи.
Начало исследованиям полёта птиц заложил ещё Аристотель в работе «О частях животных», в четвёртой книге. Он считал, что скорость пропорциональна силе, которая действует на тело, поэтому для движения постоянно необходим «движитель», который двигает тело, а сам при этом остаётся недвижимым. Чтобы объяснить движение летающих объектов, Аристотель был вынужден ввести понятие передачи функции «движителя» частям воздуха. Понятия инерции, ускорения и аэродинамического сопротивления тогда ещё не были известны, поэтому фактически физика полёта осталась необъяснённой.
Лишь через два тысячелетия следующий значительный шаг в исследовании полёта птиц сделал Леонардо Да Винчи в своей работе «Кодекс о полёте птиц». Его заметки подробно описывали, что необходимо не только для равномерного полёта, но и для взлёта и посадки, при порывах ветра и в других ситуациях.
Его изображения детально показывали этапы движения разных частей тела птиц. Также он ввёл понятие давления воздуха и его изменений вокруг крыльев. Наблюдения за птицами натолкнули его на мысль, что основная тяга в полёте создаётся концевыми частями крыла [1]. Тем не менее, работы Леонардо Да Винчи о полёте птиц долго оставались малоизвестными — их опубликовали лишь в середине XX века [2].
В работе Джованни Альфонсо Борелли «О движении животных», опубликованной в 1680 году, подробно описана анатомия птиц с точки зрения механики и выдвинута модель, объясняющая образование подъёмной силы. Также Борелли опроверг идею Аристотеля о роли хвоста птиц в регулировании направления полёта.
Следующие этапы развития знаний о полёте птиц связаны со становлением гидродинамики. Так, Христиан Гюйгенс в ХVII столетии измерил зависимость аэродинамического сопротивления от скорости, а его ученик Готфрид Лейбниц фактически ввёл понятие закона сохранения энергии.
В 1738 году Даниил Бернулли в работе «Гидродинамика» опубликовал выведенный им закон, который связывал давление жидкости с её скоростью (сейчас известный как закон Бернулли), на основе которого Леонард Эйлер вывел набор дифференциальных уравнений, которые описывали движение жидкости. Эти уравнения впервые дали количественное описание полёта, хотя и не давали правдоподобных результатов из-за отсутствия в них вязкости. Лишь в 1843 году в работе Жан-Клода Барре Де Сен-Венана, и, независимо
Черты приспособления птиц к полёту:
· Превращение передних конечностей в крылья;
· Обтекаемое тело, покрытое перьями, черепицеобразно налегающих в крыле;
· Формирование грудины в виде киля, с мощной мускулатурой, управляющей крыльями;
· Двойное дыхание, обеспечивающее интенсивный метаболизм
· Облегчённый скелет (полые кости)
· Уменьшение массы тела благодаря отсутствию мочевого пузыря, одного яичника, зубов, прямой кишки
· Наличие высокой остроты зрения и прогрессивное развитие головного мозга, в частности мозжечка. Среди птиц нет чисто водных, чисто наземных видов. В связи с полётом в определённой среде различается и размер птиц.