С чего начинается натуральный ряд

Натуральные числа

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
783502197048
Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
783502197048

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Любое натуральное число можно записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000 … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Источник

Натуральные числа

Натуральные числа — это числа, которые используются при счёте или нумерации.

Натуральные числа, записанные в порядке их возрастания (начиная с 1) и без пропусков, образуют ряд натуральных чисел, или короче натуральный ряд:

В натуральном ряду есть первое число — 1 (один или единица), но нет последнего числа — за каждым натуральным числом следует ещё одно, которое больше предшествующего на единицу. Таким образом, есть наименьшее натуральное число — 1, а наибольшего натурального числа не существует. Следовательно 1 — это самое маленькое натуральное число.

Натуральный ряд бесконечен.

Все натуральные числа записать невозможно. Поэтому при записи натурального ряда выписывают подряд несколько первых чисел, следующих друг за другом в натуральном ряду, и в конце ставят многоточие (три точки).

Отсутствие предметов для счёта условились обозначать числом 0 (нуль).

Нуль не считается натуральным числом.

Чётные и нечётные натуральные числа

В натуральном ряду чередуются нечётные и чётные числа, то есть числа, которые делятся на 2 и которые на 2 не делятся. Начинается натуральный ряд с нечётного числа:

Нечётные числа обозначены чёрным цветом, а чётные — красным.

Прямой и обратный счёт

Прямой счёт — это перечисление чисел в порядке их возрастания. Под порядком возрастания, в данном случае, подразумевается что каждое последующее число больше предыдущего на единицу.

Рассмотрим прямой счёт от 1 до 10:

1,2,3,4,5,6,7,8,9,10
одиндватричетырепятьшестьсемьвосемьдевятьдесять

Перечисление чисел натурального ряда в порядке их возрастания называется прямым счётом.

Обратный счёт — это перечисление чисел в порядке их убывания. Под порядком убывания, в данном случае, подразумевается что каждое последующее число меньше предыдущего на единицу.

Рассмотрим обратный счёт от 10 до 1:

10,9,8,7,6,5,4,3,2,1
десятьдевятьвосемьсемьшестьпятьчетыретридваодин

Перечисление чисел натурального ряда в порядке их убывания называется обратным счётом.

Источник

Математика для блондинок

Страницы

понедельник, 15 февраля 2010 г.

С какого числа начинается натуральный ряд чисел?

Натуральный ряд чисел начинается с числа 1 (один). Число 1 (один, единица) является наименьшим натуральным числом.

19 комментариев:

Цитата из википедии:
Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах заменяют 1 на 0. В этом случае ноль считается натуральным числом.
http://ru.wikipedia.org/wiki/Натуральное_число

Абсолютно согласен. Но у нас в школах учатся на русском языке. А русский ноль, в отличие от нуля-иностранца, натуральным числом быть не желает))) Во всяком случае, так утверждают школьные учебники. Единственные, кто точно знает ответ на этот вопрос, это я и ноль)))

Для единого мнения нужно хоть какие-то мозги иметь. Всем нам, не зависимо от национальности.

Здесь у меня возник вопрос, а что такое число? По всем параметрам ноль на является числом. Я даже статью на эту тему где-то здесь написал. Но эта идея, судя по всему, опережает свое время лет эдак на несколько тысяч, если не на всегда:)

С чего начинается натуральный ряд

Если рассматривать понятие натурального числа отдельно (аксиомы Пеано), то ни о каких «нулях» и «единицах» вообще речь не идёт: есть структура, состоящая из множества, выделенного элемента, и отображения из этого множества в это множество. Таким образом, и множество целых чисел не ниже минус единицы, и ряд 2+sqrt(2),4+sqrt(2),6+sqrt(2). являются натуральными числами.

Если же речь идёт об арифметике (арифметике Пеано), то там ноль есть.

Математика одна для всех; нет отдельной математики для русскоязычных людей.

Теорию множеств я никогда не понимал. А аксиом можно понапридумывать.

Математика действительно одна для всех. Только вот попробуйте инопланетянам объяснить, чем натуральные числа отличаются от ненатуральных и как происходит отображение из множества в это же множество. Скорее всего, именно поэтому инопланетяне вообще не хотят с нами знаться.

С чего начинается натуральный ряд

> Теорию множеств я никогда не понимал.

Теория множеств тут не при чём.

> А аксиом можно понапридумывать.

Если вы говорите про общепринятые «натуральные числа», вы имеете в виду определённые общепринятые аксиомы, а не свои собственные.
Я правильно вас понял?

Это очень интересная мне тема, но в данном случае неясно, какое она имеет отношение к нашему обсуждению.

А вы неплохо понимаете математику, если сумели даже мне метафорически объяснить, что такое отображение.

Тема инопланетян в последнее время для меня присутствует везде. Об этом я уже однажды писал следующее:

«Современная математика в своем развитии всё больше отрывается от мира реального и перемещается в мир виртуальный. Сегодня уже не редки ситуации, когда математики с трудом понимают друг друга. В связи с этим возникает закономерный вопрос: как мы будем общаться с инопланетянами?

Общение с инопланетянами должно базироваться на общих для всех разумных существ понятиях. Такими понятиями являются основополагающие законы реального мира, которые одинаковы для всех во Вселенной. Законы, по которым существует Вселенная и всё в ней находящееся.

Чем проще язык математики, тем проще будет нам общаться с инопланетянами. Ну а пока, мы в математике имеем то, что имеем.»

Ой, хватит спорить. Объясните русским языком, если на экзамене сказать, что множество натуральных чисел это числа от 1 до бесконечности, т.е без знака минус и не дробные, меня не выгонят из университета?

С чего начинается натуральный ряд

С чего начинается натуральный ряд

На координатных осях и стрелочки есть, которые являются концами всех концов, но числами не являются)))

С чего начинается натуральный ряд

Что имеется в виду под словом Диалектика.

С чего начинается натуральный ряд

С чего начинается натуральный ряд

Да, написал, а потом только обратил внимание, что сам невнимательно прочитал заголовок. Вопрос то поставлен не совсем корректно. Автор не задумался, скорее всего, над разницей в понятиях числа и цифры. На вопрос, с какой цифры начинается натуральный ряд, можно ответить и то, что он начинается с нуля. А вот, с какого числа? Только с единицы. И то, нужно иметь в виду, что мы даже единицу поставили под сомнение в плане ее принадлежности к числам.

Источник

Натуральные числа

С чего начинается натуральный ряд

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

🍌🍌🍌3 предмета («три»)
🍌🍌🍌🍌4 предмета («четыре»)
🍌🍌🍌🍌🍌5 предметов («пять»)
🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чиселбесконечно и начинается с единицы (1)
за каждым натуральным числом следует другоеоно больше предыдущего на 1
результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Вопрос для самопроверки

Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

Источник

Натуральные числа. Ряд натуральных чисел.

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

С чего начинается натуральный ряд

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *