Радикалы что это в биологии
Свободный радикал
Свободные радикалы в химии — частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов. По другому определению свободный радикал — вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона. Неспаренный электрон занимает атомную или молекулярную орбиталь в одиночку. Как правило, радикалы обладают парамагнитными свойствами, так как наличие неспаренных электронов вызывает взаимодействие с магнитным полем. Кроме этого наличие неспаренного электрона способно значительно усилить реакционную способность, хотя это свойство радикалов широко варьирует.
Содержание
Образование
Радикал может образоваться в результате потери одного электрона нерадикальной молекулой:
или при получении одного электрона нерадикальной молекулой:
Большинство радикалов образуются в ходе химических реакций при гомолитической диссоциации связей. Они сразу же претерпевают дальнейшие превращения в более устойчивые частицы:
Cl2 → 2Cl·
СН4 + Cl· → CH3· + HCl
CH3· + Cl2 → CH3Cl + Cl·
2Cl· → Cl2
2CH3· → C2H6
…
Зарождение радикальной цепи можно инициировать действием на вещество жестких условий (высокие температуры, электромагнитное излучение, радиация). Многие перекисные соединения — также хорошие радикалообразующие частицы.
Косвенное действие ионизирующего излучения связано с образованием свободных радикалов.
Биология и медицина
Несколько свободных радикалов имеют огромное значение в биологии и медицине. Помимо кислорода самого по себе, который содержит два неспаренных электрона, такие свободно-радикальные молекулы как супероксид, гидроксильный радикал, а также алкоксильный и пероксильный радикалы относятся к реактивным формам кислорода и участвуют в оксидативном стрессе. Свободно-радикальный оксид азота NO является важнейшим медиатором вазорелаксации (расслабления сосудистой стенки), а его недостаток приводит к гипертензии.
Самые стабильные свободные радикалы
Некоторые вещества — свободные радикалы, из-за тех или иных кинетических или стерических ограничений, являются достаточно стабильными при нормальных условиях. Классическим примером такого радикала является трифенилметил (радикал Гомберга), дифенилпикрилгидразил (ДФПГ), вердазил (с четырьмя атомами азота), нитроксильные радикалы, например, ди-трет-бутилнитроксил (перегоняется без разложения) и др.
Ссылки
См. также
Полезное
Смотреть что такое «Свободный радикал» в других словарях:
свободный радикал — Активная частица, обладающая свободной валентностью. [ГОСТ 9.710 84] свободный радикал Молекула или фрагмент молекулы, имеющие неспаренный электрон, способный образовывать химические связи [ГОСТ 25645.321 87] Тематики полимерные и др.… … Справочник технического переводчика
СВОБОДНЫЙ РАДИКАЛ — СВОБОДНЫЙ РАДИКАЛ, короткоживущая (менее 1мс) молекула, которая имеет непарный ЭЛЕКТРОН и, таким образом, вступает в кратковременные связи с другими молекулами. Возникающие как побочные продукты химических процессов в КЛЕТКЕ, свободные радикалы… … Научно-технический энциклопедический словарь
Свободный радикал — 7. Свободный радикал Активная частица, обладающая свободной валентностью Источник: ГОСТ 9.710 84: Единая система защиты от коррозии и старения. Старение полимерных материалов. Термины и определения … Словарь-справочник терминов нормативно-технической документации
свободный радикал — laisvasis radikalas statusas T sritis chemija apibrėžtis Atomas arba grupė, turinti orbitalę su nesuporuotu elektronu. atitikmenys: angl. free radical rus. свободный радикал … Chemijos terminų aiškinamasis žodynas
свободный радикал — laisvasis radikalas statusas T sritis fizika atitikmenys: angl. free radical vok. freies Radikal, n rus. свободный радикал, m pranc. radical libre, m … Fizikos terminų žodynas
Радикал (химия) — Углеводородный радикал (от лат. radix корень; также углеводородный остаток) в химии группа атомов, соединённая с функциональной группой молекулы. Обычно при химических реакциях радикал переходит из одного соединения в другое без изменения. Но… … Википедия
свободный кислородный радикал — Атом кислорода, содержащий избыточное количество электронов, являющийся потенциально опасным для тканей организма [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN oxygen free radical … Справочник технического переводчика
Свободный — ая, ое; ден, дна, дно. 1. Не испытывающий на себе экономического и политического гнёта, давления; независимый. С ая личность. С ые граждане свободной страны. С. народ. // Свойственный такому человеку, государству. С. дух. С ая душа. С. образ… … Энциклопедический словарь
свободный — I см. свобода II ая, ое; ден, дна, дно. см. тж. свободно 1) а) Не испытывающий на себе экономического и политического гнёта, давления; независимый. С ая личность. С ые граждане свободной страны. Своб … Словарь многих выражений
Углеводородный радикал — (от лат. radix «корень»; также углеводородный остаток) в химии группа атомов, соединённая с функциональной группой молекулы. Обычно при химических реакциях радикал переходит из одного соединения в другое без изменения. Но… … Википедия
Радикалы свободные
Свободные радикалы в химии — частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов. По другому определению свободный радикал — вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона. Неспаренный электрон занимает атомную или молекулярную орбиталь в одиночку. Как правило, радикалы обладают парамагнитными свойствами, так как наличие неспаренных электронов вызывает взаимодействие с магнитным полем. Кроме этого наличие неспаренного электрона способно значительно усилить реакционную способность, хотя это свойство радикалов широко варьирует.
Содержание
Образование
Радикал может образоваться в результате потери одного электрона нерадикальной молекулой:
или при получении одного электрона нерадикальной молекулой:
Большинство радикалов образуются в ходе химических реакций при гомолитической диссоциации связей. Они сразу же претерпевают дальнейшие превращения в более устойчивые частицы:
Cl2 → 2Cl·
СН4 + Cl· → CH3· + HCl
CH3· + Cl2 → CH3Cl + Cl·
2Cl· → Cl2
2CH3· → C2H6
…
Зарождение радикальной цепи можно инициировать действием на вещество жестких условий (высокие температуры, электромагнитное излучение, радиация). Многие перекисные соединения — также хорошие радикалообразующие частицы.
Косвенное действие ионизирующего излучения связано с образованием свободных радикалов.
Биология и медицина
Несколько свободных радикалов имеют огромное значение в биологии и медицине. Помимо кислорода самого по себе, который содержит два неспаренных электрона, такие свободно-радикальные молекулы как супероксид, гидроксильный радикал, а также алкоксильный и пероксильный радикалы относятся к реактивным формам кислорода и участвуют в оксидативном стрессе. Свободно-радикальный оксид азота NO является важнейшим медиатором вазорелаксации (расслабления сосудистой стенки), а его недостаток приводит к гипертензии.
Самые стабильные свободные радикалы
Некоторые вещества — свободные радикалы, из-за тех или иных кинетических или стерических ограничений, являются достаточно стабильными при нормальных условиях. Классическим примером такого радикала является трифенилметил (радикал Гомберга), дифенилпикрилгидразил (ДФПГ), вердазил (с четырьмя атомами азота), нитроксильные радикалы, например, ди-трет-бутилнитроксил (перегоняется без разложения) и др.
Ссылки
См. также
Полезное
Смотреть что такое «Радикалы свободные» в других словарях:
РАДИКАЛЫ СВОБОДНЫЕ — (радикалы хим.) (1) неустойчивые высокоактивные частицы, образующиеся из молекул, главным образом органических соединений, подвергнутых воздействию высокой температуры, радиации, ультрафиолетового излучения, катализаторов и др., и обладающие… … Большая политехническая энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… … Современная энциклопедия
Радикалы свободные — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… … Иллюстрированный энциклопедический словарь
радикалы свободные — атомы или химические соединения с неспаренным электроном (обозначается жирной точкой), например H, CH3, C(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во многих химических реакциях. Некоторые свободные… … Энциклопедический словарь
Радикалы свободные — кинетически независимые частицы, характеризующиеся наличием неспаренных электронов. Например, к неорганическим Р. с., имеющим на внешнем уровне один электрон (см. Атом, Валентность), относятся атомы водорода Н·, щелочных металлов (Na·, К· … Большая советская энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — хим. частицы с неспаренными электронами на внеш. орбиталях; обладают парамагнетизмом и высокой реакц. способностью. Р. с. могут быть короткоживущими (время жизни доли секунды) или долгоживущими (до неск. лет), нейтральными или заряженными (см.… … Химическая энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — атомы или хим. соед. с неспаренным электроном (обозначается жирной точкой), напр. Н, СН3, С(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во мн. хим. реакциях. Нек рые Р. с. стабильны и выделены в индивид … Естествознание. Энциклопедический словарь
РАДИКАЛЫ СВОБОДНЫЕ — частицы (атомы или атомные группы) с неспаренными электронами на внеш. атомных или молекулярных орбиталях. Образуются из молекул под действием нагревания, электромагн. излучения, потока частиц высоких энергий, в присутствии катализаторов. Могут… … Большой энциклопедический политехнический словарь
СВОБОДНЫЕ РАДИКАЛЫ — см. Радикалы свободные … Большой Энциклопедический словарь
Радикалы свободные
Полезное
Смотреть что такое «Радикалы свободные» в других словарях:
РАДИКАЛЫ СВОБОДНЫЕ — (радикалы хим.) (1) неустойчивые высокоактивные частицы, образующиеся из молекул, главным образом органических соединений, подвергнутых воздействию высокой температуры, радиации, ультрафиолетового излучения, катализаторов и др., и обладающие… … Большая политехническая энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… … Современная энциклопедия
Радикалы свободные — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… … Иллюстрированный энциклопедический словарь
радикалы свободные — атомы или химические соединения с неспаренным электроном (обозначается жирной точкой), например H, CH3, C(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во многих химических реакциях. Некоторые свободные… … Энциклопедический словарь
Радикалы свободные — Свободные радикалы в химии частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов. По другому определению свободный радикал вид молекулы или атома, способный к независимому существованию (то есть обладающий… … Википедия
Радикалы свободные — кинетически независимые частицы, характеризующиеся наличием неспаренных электронов. Например, к неорганическим Р. с., имеющим на внешнем уровне один электрон (см. Атом, Валентность), относятся атомы водорода Н·, щелочных металлов (Na·, К· … Большая советская энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — хим. частицы с неспаренными электронами на внеш. орбиталях; обладают парамагнетизмом и высокой реакц. способностью. Р. с. могут быть короткоживущими (время жизни доли секунды) или долгоживущими (до неск. лет), нейтральными или заряженными (см.… … Химическая энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — атомы или хим. соед. с неспаренным электроном (обозначается жирной точкой), напр. Н, СН3, С(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во мн. хим. реакциях. Нек рые Р. с. стабильны и выделены в индивид … Естествознание. Энциклопедический словарь
РАДИКАЛЫ СВОБОДНЫЕ — частицы (атомы или атомные группы) с неспаренными электронами на внеш. атомных или молекулярных орбиталях. Образуются из молекул под действием нагревания, электромагн. излучения, потока частиц высоких энергий, в присутствии катализаторов. Могут… … Большой энциклопедический политехнический словарь
СВОБОДНЫЕ РАДИКАЛЫ — см. Радикалы свободные … Большой Энциклопедический словарь
Аминокислоты белков: структура, основные свойства, заменимые и незаменимые аминокислоты
Аминокислоты — это мономеры белков.
Белки — неразветвленные гетерополимеры. Их мономерами выступают аминокислоты.
Структура аминокислот
Белки состоят из аминокислот со схожим строением. При этом стоит отметить, что при всей схожести они никогда не являются точной копией друг друга.
Любая аминокислота включает 2 части:
При этом радикал аминокислот структурно всегда разный. В белке всегда есть 20 различных аминокислот. В них, в свою очередь — 20 различных боковых цепей. Самая простая такая цепь — глицин: у нее боковой радикал является свободным атомом водорода.
При нейтральных значениях pH, карбоксильная группа свободной аминокислоты диссоциирует: отдает протон и приобретает отрицательный заряд.
Аминогруппа свободной аминокислоты может присоединять к себе протон и приобретать положительный заряд. Это приводит к тому, что аминокислоты переходят в состояние цвиттер-иона — одна часть получает положительный заряд, а другая — отрицательный.
Структура радикалов аминокислот очень разная и зависит от таких критериев как полярность и строение. По этим критериям они и классифицируются, хотя такую классификацию можно выделить условно. Зато она наглядно показывает все грани химической структуры аминокислот.
Находясь в нейтральной среде, радикалы аминокислот (большинство) приобретают частичный или полный полярный заряд. Заряженные радикалы вступают в контакт с полярными радикалами в той же белковой молекуле за счет электростатического взаимодействия. Если взаимодействие происходит с низкомолекулярными веществами, то контакт происходит и в других белковых молекулах.
Пространственная структура белка, то, как он взаимодействует с другими белками и прочими молекулами (взаимодействия рецептор-лиганд, фермент-субстрат) зависит от наличия и расположения заряженных и полярных радикалов.
Больше информации по этому моменту можно посмотреть по темам «Ферменты» и «Уровни структуры белка».
Типы радикалов аминокислот
Все радикалы аминокислот делят на следующие группы:
Еще выделяют серосодержащие аминокислоты (метионин, цистеин) и ароматические (триптофан, фенилаланин).
Каждый год во всем мире производят больше 200 тысяч аминокислот, которые приобретают как биологическое, так и прикладное значение. К примеру, в лабораторных условиях сегодня получают глутаминовую кислоту, глицин, лизин, метионин.
Основные свойства аминокислот
Если говорить о свойствах аминокислот, то лучше рассматривать их на конкретных примерах. Вот некоторые аминокислоты и их свойства:
Заменимые и незаменимые аминокислоты
Обычно аминокислоты делят на заменимые и незаменимые.
Незаменимые аминокислоты поступают в организм человека с пищей, поскольку внутри организма синтезироваться не могут. Например, валин, лейцин, треонин и др. Отдельно стоит упомянуть гистидин — это для новорожденных аминокислота. В случае, если наблюдается дефицит таких аминокислот в организме человека, то он не может нормально функционировать.
Заменимые аминокислоты организм синтезирует самостоятельно из азота или других аминокислот, в том числе — незаменимых. Все остальные 11 аминокислот являются заменимыми.
Заменимые аминокислоты тоже должны поступать в человеческий организм. Если это не будет происходить, то для восполнения такой нехватки будут использоваться незаменимые аминокислоты и, соответственно, ослаблять таким образом защитные силы организма.
Есть две аминокислоты, которые можно назвать целиком метаболически заменимыми: серин и глутаминовая кислота.
Деление на заменимые и незаменимые аминокислоты в некоторых случаях не совсем корректно. К примеру, тирозин считается заменимой аминокислотой. Но важно одно условие: чтобы было достаточно фенилаланина. Аргинин считается заменимой аминокислотой и синтезируется в организме человека, но бывают такие состояния и метаболические особенности, при которых аргинин можно назвать незаменимой аминокислотой.
Согласно исследованиям в этой области, биосинтез заменимых аминокислот в объемах, покрывающих потребности организма, не представляется возможным. И те, и другие аминокислоты являются важной составляющей живого организма и условием нормального его функционирования.
Опасность свободных радикалов для здоровья
Кислород – кто ты, друг или враг?
Казалось бы вопрос простой и ответ будет однозначным – конечно, друг! Без кислорода невозможна жизнь ничего живого на Земле, и человека в том числе! Это вам подтвердит любой любой школьник после седьмого класса. Но только если ученик не добрался по программе до понятия «синглетный кислород» и «свободные радикалы». А вот тут и проявляются некоторые неприятные свойства чудесного химического элемента, действительно дарящего жизнь всем нам.
Немного химии за девятый класс
Молекула кислорода состоит из двух атомов, каждый из которых имеет по восемь электронов на внешней орбите. Однако существование молекулы обеспечивает то, что одна пара общая. Она связывает два атома в молекулу (О2). При некоторых условиях связь общих электронов может разрываться, и тогда мы имеем два атома, у каждого из которых по семь электронов на внешней орбите. То есть, один электрон непарный. Но в природе устроено так, что долго выдержать одиночество этот электрон не в силах, он жадно ищет – с кем бы соединиться? И в выборе своём совершенно неразборчив!
Вот тогда и говорят о синглетном кислороде или свободном радикале. Радикал буквально рыщет в поисках объекта, у которого можно отхватить недостающий электрон себе в пару. В этом отношении он сродни разбойнику с большой дороги, способному ограбить любого, кто попадётся на пути. Свободный радикал разрывает связи других молекул. При этом те, в свою очередь, лишившись своего законного электрона, сами превращаются в свободные радикалы, разделяясь при этом на две-три новые молекулы. И охота продолжается, только охотников становится вдвое, а то и втрое больше. Так формируется цепная реакция свободно-радикального окисления, называемая ещё перекисным окислением.
Натиск агрессора
Нетрудно себе представить, что волна радикалов, обрушившаяся на клетку, наносит ей массу повреждений. А ведь из клеток, как из кирпичиков, сложен весь наш организм! И так мы устроены, что каждая клеточка начинается с мембраны, ограничивающей её содержимое – цитоплазму и особые включения, органеллы, – от окружающей среды. В число органелл входит и ядро, хранитель генетической информации, основа продления рода. Органеллы также имеют мембраны, можно сказать, что весь организм на тонком уровне состоит из мембран. И всё это оказывается под угрозой!
В строении мембраны существенную роль играют жиры – липиды – в связке с углеводами. Для свободного радикала кислорода липиды являются желанной целью. Здесь наиболее легко происходят разрывы связей, образуются новые, уже липидные радикалы. Мембрана теряет свою целостность, нарушается процесс обмена воды и ионов между клеткой и межклеточным пространством, а затем и обмен веществ и энергии в самой клетке. Разрушаются органеллы, в частности митохондрии, а именно они ответственны за выработку энергии для организма. Волна радикалов накрывает и ядро, атаке подвергается ДНК, её цепочки разрываются. В конечном итоге клетка гибнет. Процесс разрушения жиров в мембранах называется перекисным окислением липидов (ПОЛ). Процессу этому сегодня медики придают большое значение.
Печальные последствия
Отрицательными результатами действия свободных радикалов могут быть:
Первичные, вторичные и третичные свободные радикалы
Источники свободных радикалов из окружающей среды: радиация, курение, напитки с высокой окислительной способностью, хлорированная вода, загрязнение окружающей среды, окисление почвы и кислотные дожди, непомерное количество консервантов и полуфабрикатов, антибиотики, компьютеры, телевизоры, мобильники.сигаретный дым. Кроме всего этого свободные радикалы могут также образовываться в нормальных процессах метаболизма, под влиянием солнечных лучей (фотолиз), радиоактивного облучения (радиолиз) и даже ультразвука.
Например, казалось бы, полезное для загара, но однако мощное ультрафиолетовое излучение солнца способно «выбивать» электроны из молекул клеток кожи и как результат «родные» молекулы превращаются в свободные радикалы. Основной белок кожи – коллаген, при столкновении со свободными радикалами кислорода, становится химически активным настолько, что способен связаться с другой молекулой коллагена. Образовавшиеся в результате такого процесса молекулы, обладая всеми свойствами обычной молекулы коллагена, тем не менее, в силу размеров менее эластичны, а их накопление ведет к появлению морщин.
Внутренние источники свободных радикалов. В процессах образования энергии в митохондриях, например из углеводов; В процессе распада вредных жиров в организме при сжигании многонасыщенных жирных кислот; В воспалительных процессах, при нарушениях метаболизма – диабет; В продуктах обмена веществ в толстом кишечнике.
Стресс (психо-эмоциональный) также способствуют окислительному стрессу. Состояние стресса заставляет организм вырабатывать адреналин и кортизол. В больших количествах эти гормоны нарушают нормальное протекание обменных процессов и способствуют появлению свободных радикалов во всем организме.
Многие из вышеперечисленных факторов нам неподвластны, что-то мы и не хотим менять, но многое мы все же в силах изменить. Во всяком случае знать своих «врагов» в лицо мы просто обязаны. Реакции с участием свободных радикалов могут являться причиной или осложнять течение многих опасных заболеваний, таких как астма, артрит, рак, диабет, атеросклероз, болезни сердца, флебиты, болезнь Паркинсона, болезнь Альцгеймера, эпилепсия, рассеянный склероз, депрессии и другие.
Несколько утешительных слов в заключение
Конечно, создав систему свободно-радикального окисления, природа озаботилась, чтобы разбушевавшимся радикалам был некий противовес, сдерживающее начало. И действительно, существует целый ряд веществ, прерывающих каскад изменений, гасящих волну цепной реакции образования свободных радикалов. При этом сами эти вещества в радикалы не превращаются, остаются инертными. Это и есть антиоксидантная защита. Она может быть своей собственной, внутриклеточной, предусмотренной природой для контроля свободно-радикального окисления, она может осуществляться веществами, поступающими извне, чаще всего с пищей. Очень полезны пробиотические продукты с живыми бифидобактериями и лактобактериями, такие как бифилакт БИОТА. Живые пробиотические микроорганизмы эффективно борются со свободными радикалами. Но вопрос этот обширен и требует ещё одной статьи и отдельного рассмотрения.