Основные принципы построения вычислительной машины д фон неймана

Принципы фон Неймана

Основные принципы построения вычислительной машины д фон неймана

Фон Нейман сформулировал 5 основных принципов:

Не нашли что искали?

Просто напиши и мы поможем

Архитектура фон Неймана

Архитектура ЭВМ фон Неймана включает:

К каждому ЭВМ прилагается список операций, которые могут проводиться с его помощью. Команда имеет следующую структуру:

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Принципы фон Неймана на практике

В компьютерах последних поколений все так же применяется двоичная система, принципы автоматической работы и сохранности. Оставшиеся 2 принципа применяются в отдельных случаях.

Есть модели, способные устанавливать отличия между данными и программами. В таких компьютерах ячейки не просто хранят информацию, но и имеют метку, указывающую на характер ее содержимого. Чтобы сэкономить память, метки устанавливаются не на каждую ячейку, а на их последовательность, что дает возможность различать команды и данные.

Во многих современных компьютерах нарушаются принципы однородности и линейности. К примеру, память состоит из 2 частей с независимыми адресами ячеек, или ячейки в принципе без адресов (ассоциативная память).

Все модели новых поколений, у которых больше 1 процессора, не выполняют команды последовательно. У таких компьютеров есть возможность выполнять сразу несколько команд, при этом они могут относиться к одной программе, или к разным.

Источник

Реферат: Принципы фон Неймана

Государственное образовательное учреждение

высшего профессионального образования Тюменской области

ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

МИРОВОЙ ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА

Кафедра математики и информатики

«ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ, СЕТИ И ТЕЛЕКОМУНИКАЦИИ»

«ПРИНЦИПЫ ФОН НЕЙМАНА»

2. Основные принципы архитектуры Джона фон Неймана…………….3

4. Как работает машина Джона фон Неймана…………………………. 4

С середины 60-х годов очень сильно изменился подход к созданию вычислительных машин. Вместо разработки аппаратуры и средств математического обеспечения стала проектироваться система, состоящая из синтеза аппаратных (hardware) и программных (software) средств. При этом на главный план выдвинулась концепция взаимодействия. Так возникло новое понятие — архитектура ЭВМ.

Под архитектурой ЭВМ принято понимать совокупность общих принципов организации аппаратно-программных средств и их основных характеристик, определяющая функциональные возможности вычислительной машины при решении соответствующих типов задач.

Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.

Архитектуру вычислительного средства необходимо отличать от структуры, так как структура вычислительного средства определяет его текущий состав на определенном уровне детализации и описывает связи внутри средства. Архитектура же определяет основные правила взаимодействия составных элементов вычислительного средства, описание которых выполняется в той мере, в какой необходимо для формирования правил взаимодействия. Она устанавливает не все связи, а только наиболее необходимые, которые должны быть известны для более грамотного использования применяемого средства.

Так, пользователю ЭВМ не важно, на каких элементах выполнены электронные схемы, схемно или программно исполняются команды и тому подобное. Архитектура ЭВМ действительно отражает круг проблем, которые относятся к общему проектированию и построению вычислительных машин и их программного обеспечения.

Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.

Основные принципы архитектуры Джона фон Неймана

Джон фон Нейман (1903 – 1957) – американский математик, внесший большой вклад в создание первых ЭВМ и разработку методов их применения. Именно он заложил основы учения об архитектуре вычислительных машин, подключившись к созданию первой в мире ламповой ЭВМ ENIAC в 1944 году, когда ее конструкция была уже выбрана. В процессе работы, во время многочисленных дискуссий со своими коллегами Г.Голдстайном и А.Берксом, Джон фон Нейман высказал идею принципиально новой ЭВМ. В 1946 году ученые изложили свои принципы построения вычислительных машин в ставшей классической статье «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства». С тех пор прошло более полувека, но выдвинутые в ней положения сохраняют свою актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел, в ведь ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде. Авторы продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип «хранимой программы». Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней, в то время как собственно расчет не мог продолжаться более нескольких минут – выходили из строя лампы, которых было огромное количество. Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Джон фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ), обычно объединяемые в центральный процессор, в который также входит набор регистров общего назначения (РОН) – для промежуточного хранения информации в процессе ее обработки; память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком.

Основные принципы построения вычислительной машины д фон неймана

Архитектура ЭВМ, построенная на принципах Джон фон Неймана.

Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов.

Как работает машина Джона фон Неймана

Теперь более подробно поговорим о том, как же работает машина построенная на данной архитектуре. Машина фон Неймана состоит из запоминающего устройства (памяти) – ЗУ, арифметико-логического устройства – АЛУ, устройства управления – УУ, а также устройств ввода и вывода, что видно их схемы и о чем говорилось ранее.

Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

Команда состоит из указания, какую операцию следует выполнить и адресов ячеек памяти, где хранятся данные, над которыми следует выполнить указанную операцию, а также адреса ячейки, куда следует записать результат, если его требуется сохранить в ЗУ.

Арифметико-логическое устройство выполняет указанные командами операции над указанными данными. Из него результаты выводятся в память или устройство вывода.

Управляющее устройство (УУ) управляет всеми частями компьютера. От него на другие устройства поступают сигналы «что делать», а от других устройств УУ получает информацию об их состоянии. Оно содержит специальный регистр (ячейку), который называется «счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы, а УУ считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство — «Регистр команд». УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды.

АЛУ – обеспечивает арифметическую и логическую обработку двух переменных, в результате которых формируется выходная переменная. Функции АЛУ обычно сводятся к простым арифметическим и логическим операциям и операциям сдвига. Также формирует ряд признаков результата (флагов), характеризующих полученный результат и события, произошедшие в результате его получения (равенство нулю, знак, четность, переполнение). Флаги могут анализироваться УУ с целью принятия решения о дальнейшей последовательности выполнения команд.

В результате выполнения любой команды счетчик команд изменяется на единицу и, следовательно, указывает на следующую команду программы. Когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов, то специальная команда перехода содержит адрес ячейки, куда требуется передать управление.

Итак, выделим ещё раз основные принципы, предложенные фон Нейманом:

· Принцип двоичного кодирования. Для представления данных и команд используется двоичная система счисления.

· Принцип однородности памяти. Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления — чаще всего двоичной). Над командами можно выполнять такие же действия, как и над данными.

· Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

· Принцип последовательного программного управления. Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.

· Принцип условного перехода. Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые изменяют последовательность выполнения команд в зависимости от значений данных. (Сам принцип был сформулирован задолго до Джона фон Неймана Адой Лавлейс и Чарльзом Бэббиджем, однако он логически включен в фон-неймановский набор как дополняющий предыдущий принцип.)

Джон фон Нейман внес огромный вклад в развитие первых ЭВМ и разработку методов их применения. Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон-неймановской архитектуры». Принципы этой архитектуры широко используются и сегодня. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера).

У современных компьютеров запоминающее устройство, хранящее информацию и программы, «многоярусно». Оно включает в себя оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ, но с существенно более медленным доступом. На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет только в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

1. Х.Крейгон. Архитектура компьютера и её реализация. Учебное пособие. – С-Пб., Мир, 2004.

2. Э.Таненбауэм. Архитектура компьютера. Научная литература. – С-Пб., Питер, 2003.

Источник

Принципы построения и работы ЭВМ Джона фон Неймана

Человек, сформулировавший знаменитые принципы фон Неймана, родился в 1903 г. в Будапеште. Выходец из еврейской семьи, Янош Лайош Нейман, с детства проявлял задатки будущего математика, физика, химика.

В 30-х годах преподавал в Германии под именем Иоганна фон Неймана. Расцветающий нацизм и приглашение от американцев подтолкнули молодого ученого к решению перебраться в США. Там он окончательно стал Джоном.

Основные принципы построения вычислительной машины д фон неймана

Работал в Принстоне, в университете и Институте перспективных исследований. Одно время там же работал по близкой тематике Алан Тьюринг. Один из создателей информатики в современном виде. Повлияли ли на Джона работы последнего, достоверно неизвестно.

Принципы Джона фон Неймана

Ученый был специалистом широкого профиля, но в историю вошел как создатель новационной архитектуры компьютера. Радикально нового с тех пор не придумали.

Основные принципы построения вычислительной машины д фон неймана

Понятие «архитектура» означает необходимую организацию «железа» и программ для оптимального решения задач. При этом учитываются финансовые затраты, область приложения, функционал, комфортность в работе.

Не стоит путать со «структурой». Последняя не столь глобально описывают внутренние связи. Уточняет взаимодействие деталей устройства.

Идея возникла, когда фон Нейман занялся анализом недостатков первой электронной машины ENIAC (1944 г.). Сделанные ранее в Германии образцы были электромеханическими, на реле.

Основные принципы построения вычислительной машины д фон неймана

Концепция создания усовершенствованной ЭВМ EDVAC была представлена в 1946 г. Новшество заключалось в следующем:

Утверждается двоичная система счисления как наиболее логичная и простая для реализации в компьютере. В дальнейшем нововведение дало возможность работать не только с цифрами, но и с текстами, графикой, видео / звуком.

Для проведения операций используется программа, включающая выполняемые одна за другой команды. Последняя в последовательности сигнализирует об окончании процесса. В нашем понимании – это программирование.

Программы и данные размещаются в памяти ЭВМ, преобразовываясь в двоичный код (см. п. 1). Производимые над ними операции схожи, соблюдается однородность. Машина самостоятельно корректировала программу сообразно запрошенным операциям.

Ячейкам памяти присваиваются конкретные адреса. Таким образом вводятся переменные.

Команды могут исполняться не только последовательно, но допускается переход с соблюдением условия. Так, например, может запускаться циклическая обработка данных.

Качественным улучшением по сравнению с ЭНИАКом стала легкость загрузки программ. Последние больше не являлись компонентом устройства и без труда менялись.

Принцип построения и работы ЭВМ фон Неймана

Основные принципы построения вычислительной машины д фон неймана

Заносимые в память команды (программа) содержат информацию о необходимом действии и адреса требуемых данных. Также вводятся идентификатор ячейки для введения память результата (если нужно).

АЛУ отвечает за исполнение команды. Итог операции отправляется в память или на вывод. ВЗУ сходно с устройством вывода тем, что используется для недолгого хранения параметров. Только содержит информацию в непонятном для оператора формате. Исключительно для машины.

Если кратко, основной функцией АЛУ является поддержка незатейливых действий: арифметических, логических, перемещением данных. Еще анализируется результат. Решения по анализу принимаются УУ.

УУ предназначено для отправки указаний непосредственно отдельным деталям и получения от них подтверждений. Следит за очередностью выполнения команд и за их исполнением вообще.

Заключение

Основные принципы построения вычислительной машины д фон неймана

Фон Нейман привнес неоценимые новшества в создание машин электронного класса. Благодаря придуманной им схеме, улучшенный калькулятор (каковым являлся ЭНИАК) превратился со временем в инструмент обработки любой информации. При этом их «железный» состав изменился слабо. Электронные лампы, например, заменили на полупроводники.

УУ и АЛУ скомпоновали в моноблочный центральный процессор. Значительные качественные изменения претерпело ОЗУ. Возрос объем. Гораздо удобней стали аппараты ввода и вывода. Но принципиальных подвижек пока нет.

С другой стороны, заслуги представляются несколько преувеличенными. Основы «принципов» рождались в результате дискуссий с коллегами. Но в опубликованных итогах оказалась одна фамилия. Но безусловна роль фон Неймана как систематизатора. А на титул первооткрывателя он и не претендовал.

Источник

Принципы фон Неймана построения электронно-вычислительной машины.

Основные принципы построения вычислительной машины д фон неймана Основные принципы построения вычислительной машины д фон неймана Основные принципы построения вычислительной машины д фон неймана Основные принципы построения вычислительной машины д фон неймана

Основные принципы построения вычислительной машины д фон неймана

Основные принципы построения вычислительной машины д фон неймана

· Принцип двоичного кодирования

· Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов (двоичных цифр, битов) и разделяется на единицы, называемые словами.

· Принцип однородности памяти

· Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

· Принцип адресуемости памяти

· Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

· Принцип последовательного программного управления

· Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

· Принцип жесткости архитектуры

· Неизменяемость в процессе работы топологии, архитектуры, списка команд.

· Компьютеры, построенные на этих принципах, относят к типу фон-неймановских.

· Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.

· Для сравнения, программа компьютера ENIAC (где не было хранимой в памяти программы) определялась специальными перемычками на панели. Чтобы перепрограммировать машину (установить перемычки по-другому) мог потребоваться далеко не один день. И хотя программы для современных компьютеров могут писаться годы, однако они работают на миллионах компьютеров после несколько минутной установки на жесткий диск.

· Основные принципы построения вычислительной машины д фон неймана

· Основные принципы построения вычислительной машины д фон неймана

· Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

· Команда состоит из указания, какую операцию следует выполнить (из возможных операций на данном «железе») и адресов ячеек памяти, где хранятся данные, над которыми следует выполнить указанную операцию, а также адреса ячейки, куда следует записать результат (если его требуется сохранить в ЗУ).

· Арифметико-логическое устройство выполняет указанные командами операции над указанными данными.

· Из арифметико-логического устройства результаты выводятся в память или устройство вывода. Принципиальное различие между ЗУ и устройством вывода заключается в том, что в ЗУ данные хранятся в виде, удобном для обработки компьютером, а на устройства вывода (принтер, монитор и др.) поступают так, как удобно человеку.

· УУ управляет всеми частями компьютера. От управляющего устройства на другие устройства поступают сигналы «что делать», а от других устройств УУ получает информацию об их состоянии.

· Управляющее устройство содержит специальный регистр (ячейку), который называется «счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы. УУ считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство — «Регистр команд». УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

· В результате выполнения любой команды счетчик команд изменяется на единицу и, следовательно, указывает на следующую команду программы. Когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов, то специальная команда перехода содержит адрес ячейки, куда требуется передать управление.

Основные принципы построения вычислительной машины д фон неймана

16)Структура и архитектура вычислительной системы

Система (от греческого systema — целое, составленное из частей соединение) — это совокупность элементов, взаимодействующих друг с другом, образующих определенную целостность, единство.
Вычислительная система — это совокупность одного или нескольких компьютеров или процессоров, программного обеспечения и периферийного оборудования, организованная для совместного выполнения информационно-вычислительных процессов.
Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку.
Основные принципы построения, закладываемые при создании ВС:
• возможность работы в разных режимах;
• модульность структуры технических и программных средств, что позволяет совершенствовать и модернизировать вычислительные системы без коренных их переделок;
• унификация и стандартизация технических и программных решений;
• иерархия в организации управления процессами;
• способность систем к адаптации, самонастройке и самоорганизации;
• обеспечение необходимым сервисом пользователей при выполнении вычислений
По назначению ВС делят на
• универсальные,
• проблемно-ориентированные
• специализированные.
Универсальные предназначаются для решения широкого класса задач. Проблемно-ориентированные используются для решения определенного круга задач в сравнительно узкой сфере. Специализированные ориентированы на решение узкого класса задач
По типу ВС различаются на
• многомашинные
• многопроцессорные.
Вычислительная система может строиться на базе либо целых компьютеров (многомашинная ВС), либо на базе отдельных процессоров (многопроцессорная ВС).
По типу ЭВМ или процессоров различают
• однородные – строятся на базе однотипных компьютеров или процессоров.
• неоднородные системы – включает в свой состав различные типы компьютеров или процессоров.
Территориально ВС делятся на:
• сосредоточенные (все компоненты располагаются в непосредственной близости друг от друга);
• распределенные (компоненты могут располагаться на значительном расстоянии, например, вычислительные сети);
По методам управления элементами ВС различают
• централизованные,
• децентрализованные
• со смешанным управлением.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Название: Принципы фон Неймана
Раздел: Рефераты по информатике
Тип: реферат Добавлен 23:36:34 19 июня 2011 Похожие работы
Просмотров: 8186 Комментариев: 21 Оценило: 15 человек Средний балл: 4.3 Оценка: 4 Скачать